Generalized Pythagorean Triples and Pythagorean Triple Preserving Matrices
نویسندگان
چکیده
منابع مشابه
Generalized DNA matrices, Silver Means, and Pythagorean Triples
Petoukhov [1], [2], [3] has studied a family of bisymmetric 2 n x 2 n matrices that code the structure of the four DNA bases, the 64 codons that make up the 20 amino acids in all living structures, and beyond that, the proteins assembled from the amino acids as building blocks [1], [2], [3]. As the result of his studies he has found that the amino acids express certain degeneracies, 8 with high...
متن کاملPythagorean Triples
Let n be a number. We say that n is square if and only if: (Def. 3) There exists m such that n = m2. Let us note that every number which is square is also natural. Let n be a natural number. Note that n2 is square. Let us observe that there exists a natural number which is even and square. Let us observe that there exists a natural number which is odd and square. Let us mention that there exist...
متن کاملPythagorean Triples
The name comes from elementary geometry: if a right triangle has leg lengths x and y and hypotenuse length z, then x + y = z. Of course here x, y, z are positive real numbers. For most integer values of x and y, the integer x + y will not be a perfect square, so the positive real number √ x2 + y2 will be irrational: e.g. x = y = 1 =⇒ z = √ 2. However, a few integer solutions to x + y = z are fa...
متن کاملPythagorean Triples and Cryptographic Coding
This paper summarizes basic properties of PPTs and shows that each PPT belongs to one of six different classes. Mapping an ordered sequence of PPTs into a corresponding sequence of these six classes makes it possible to use them in cryptography. We pose problems whose solution would facilitate such cryptographic application. Introduction A Pythagorean triple (a, b, c) consists of positive integ...
متن کاملAre monochromatic Pythagorean triples avoidable?
A Pythagorean triple is a triple of positive integers a,b,c ∈ N+ satisfying a2 + b2 = c2. Is it true that, for any finite coloring of N+, at least one Pythagorean triple must be monochromatic? In other words, is the Diophantine equation X2 +Y 2 = Z2 regular? This problem has been open since several decades, even restricted to 2-colorings. In this note, we introduce partial morphisms, which are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Missouri Journal of Mathematical Sciences
سال: 2009
ISSN: 0899-6180
DOI: 10.35834/mjms/1316032675